Global
EN
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
人才发展
人才发展
一同释放潜力,塑造人类健康未来
新闻&资源
时刻与您分享我们的一点一滴
企业新闻 行业资讯 产品知识 资料下载
产品知识
与您分享产品知识
EMS 抗扰度在电路设计的基本问题
2025-08-31
经常有人问,EMC的EMS搞扰度设计,有哪些常见问题,接下来就是常用问题: 1. 在汽车电子 EMS 设计中,如何选择合适的微控制器以降低电磁辐射?不同品牌和型号的微控制器在电磁兼容性方面有哪些差异? 》》》在汽车电子 EMS 设计中,微控制器(MCU)的选择需围绕降低高速开关噪声、优化时钟辐射展开,核心策略包括 · 优先选择低 EMI 特性的 MCU:需关
电感的认证和认证细节,知多少?
2025-08-25
1. IEC 61000-4-6 标准中,对共模电感的抗扰度测试要求是什么?​ 2. CISPR 22 标准对信息技术设备中共模电感的传导发射抑制要求是多少?​ 3. UL 1446 标准中,共模电感的绝缘系统分级依据是什么?​
EMI电感(共模)特殊应用与创新设计之问答
2025-08-25
1. 毫米波设备中共模电感的设计面临哪些挑战? 2. 柔性电子设备中,可弯曲共模电感的材料选择有哪些? 3. 超导共模电感在极端环境下的应用前景如何?
EMI滤波器 故障分析与解决思路
2025-08-23
​1. 共模电感发热严重可能的原因有哪些?如何排查?​ 答:可能原因: 差模电流过大:共模电感对差模电流抑制能力弱,若电路中差模电流超过设计值,会导致绕组铜损(I²R)增大发热 磁芯饱和:当共模电流或差模电流过大时,磁芯磁通密度超过饱和点,磁导率骤降,涡流损耗急剧增加,导致磁芯发热 · 绕组电阻异常:绕组导线过细、绕制时存在局部短路或接触不良
EMI电感性能测试与验证要求分享
2025-08-20
1. 共模电感的插入损耗测试应采用什么夹具?为何?​ 答:共模电感的插入损耗测试通常采用50Ω标准同轴夹具(如 BNC 或 SMA 接口夹具),部分场景会配合 LINE IMPEDANCE STABILIZATION NETWORK(LISN)使用原因:依据 EMC 测试标准(如 CISPR 16、IEC 61000-4-6),测试系统的特征阻抗需统一为 50Ω
EMI共模电感使用与匹配10个技巧
2025-08-18
​问1. 如何通过共模电感与Y电容的组合优化10MHz以上的干扰抑制? 答:共模电感在低频至中高频(如 1MHz 以下)通过高共模阻抗抑制干扰,但高频(10MHz 以上)会因寄生电容(绕组间、绕组与磁芯间)导致阻抗下降,抑制效果减弱。Y电容(通常为陶瓷电容,如MLCC)具有低等效串联电阻(ESR)和寄生电感(ESL),可在高频段提供低阻抗通路,将共模干扰分流至地优化方式: 容值选择:
安装与布局细节​之EMI电感事项
2025-08-15
1. 共模电感与 X 电容之间的最佳距离是多少?为何?​ 答: 共模电感与 X 电容之间的最佳距离通常建议控制在3-5cm以内,原因在于共模电感主要抑制共模干扰,X 电容主要滤除差模干扰,二者需协同构成 EMI 滤波器 若距离过远,引线间的寄生电感会增大,导致高频段(如 100MHz 以上)滤波网络的阻抗匹配被破坏,干扰信号可能通过寄生参数 “绕开” 滤波器
电感EMI的应用场景知识要点分享
2025-08-14
1. 5G 基站电源中共模电感需要满足哪些特殊参数要求?​ 答: 高频响应与低寄生电容:需在 100MHz 以上频段保持高阻抗(如 1000Ω 以上),寄生电容需<10pF 以避免高频信号泄漏 高饱和电流:满足基站电源大电流需求(如 10A 以上),磁芯材料优选纳米晶或铁硅铝以平衡饱和特性与高频损耗、 宽温度范围:工作温度需覆盖 - 40℃~+85℃,部分户外基站要求
EMI电感材料与结构选型知识要点分享
2025-08-10
要点1. MnZn 铁氧体与 NiZn 铁氧体的共模电感在30MHz频率下的阻抗差异有多大? 答:MnZn铁氧体的磁导率可达到5,000,   但在频率为20kHz 时磁导率就可能开始下降,在30MHz 频率下,其磁导率已经下降较多,阻抗相对较低   NiZn 铁氧体初始磁导率低(100MHz)下保持磁导率不变,在 30MHz 时能保持一定的磁导率,所以阻抗相对较高。但具
总计 103 12345678...1112