Global
EN
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
人才发展
人才发展
一同释放潜力,塑造人类健康未来
新闻&资源
时刻与您分享我们的一点一滴
企业新闻 行业资讯 产品知识 资料下载
半导体基础知识
来源:音特电子 发布日期:2023-11-09 浏览次数:2162次
分享:

01

什么是半导体?

        “半导体”是一种特性介于“导体”和“绝缘体”之间的物质,前者像金属一样导电,后者几乎不导电。电流流动的容易程度与物质电阻的大小有关。如果电阻高,电流很难流动;如果电阻低,电流容易流动。

02

半导体材料

        硅(Si)和锗(Ge)是众所周知的半导体材料。当它们是纯晶体时,这些物质接近绝缘体(本征半导体),但是掺杂少量的掺杂剂就会导致电阻大幅度下降,变成导体。

        根据掺杂剂的种类,可以制成n型或p型半导体。

        由几种元素制成的半导体称为化合物半导体,它们与硅半导体等由单一元素制成的不同。具体组合有元素周期表第III组和第V组、第II组和第VI组、第IV组等。

03

n型半导体

        n型半导体是指以磷(P)、砷(As)或锑(Sb)作为杂质进行掺杂的本征半导体。第IV组的硅有四个价电子,第V组的磷有五个价电子。如果在纯硅晶体中加入少量磷,磷的一个价电子就可以作为剩余电子自由移动(自由电子*)。当这个自由电子被吸引到“+”电极上并移动时,就产生了电流流动。

04

p型半导体

        p型半导体是指掺杂了硼(B)或铟(In)的本征半导体。第IV组的硅有四个价电子,第III组的硼有三个价电子。如果将少量硼掺杂到硅单晶中,在某个位置上的价电子将不足以使硅和硼键合,从而产生了缺少电子的空穴*。在这种状态下施加电压时,相邻的电子移动到空穴中,使得电子所在的地方变成一个新的空穴,这些空穴看起来就像按顺序移动到“–”电极一样。

05

什么是化合物半导体?

图片

        除了硅,还有结合了第III组和第V组元素以及第II组和第VI组元素的化合物半导体。例如,GaAs(砷化镓)、InP(磷化铟)、InGaAlP(磷化铝镓铟)等通常用于高频器件和光学器件。
       近年来,InGaN(氮化铟镓)作为蓝光LED和激光二极管的材料引起了人们的广泛关注,SiC(碳化硅)和GaN(氮化镓)作为功率半导体材料也得到了一定程度上的关注和商业化。

    典型的化合物半导体
第Ⅱ-Ⅵ组:ZnSe
第Ⅲ-Ⅴ组:GaAs,GaN,InP,InGaAlP,InGaN
第Ⅳ-Ⅳ组:SiC,SiGe

06

什么是pn结?

        p型和n型半导体之间的接触面即称为PN结。
       p型和n型半导体键合时,作为载流子的空穴和自由电子相互吸引、束缚并在边界附近消失。由于在这个区域没有载流子,所以它被称为耗尽层,与绝缘体的状态相同。
        在这种状态下,将“+”极连接到p型区,将“-”极连接到n型区,并施加电压使得电子从n型区顺序流动到p型区。电子首先会与空穴结合而消失,但多余的电子会移动到“+”极,这样就产生了电流流动。

07

半导体器件的类型

        使用半导体的电子部件称为半导体器件。

        随着应用领域的扩大和电子设备的发展,各种半导体器件得到了不断开发。“分立半导体”是指具有单一功能的单个器件,比如晶体管和二极管。“集成电路(IC)”是指在一个芯片上安装有多个功能元件的器件。典型IC包括存储器、微处理器(MPU)和逻辑IC。LSI则提高了IC的集成度。按一般功能/结构,具体分类如下所示。

热门新闻
电感选型:基本原则
2025-03-24
01 电感基础知识与重要性 电感是能够把电能转化为磁能而存储起来的元件,结构类似于变压器,但只有一个绕组。它具有一定的电感,特性是通直流,阻碍交流当电流流过导体时,会产生电磁场,电感就是衡量线圈产生电磁感应能力的物理量;给一个线圈通入电流,线圈周围就会产生磁场,有磁通量通过,通入的电流越大,磁场越强,磁通量越大,通过线圈的磁通量和通入的电流成正比,它们的比值叫做自感系数,也就是电感 电感的作用
CAN总线共模电感51μH vs 100μH如何选择?
2025-03-14
一 . 为什么需要共模电感? 1.1 CAN总线干扰主要来源于共模噪声和差模噪声,共模噪声常见的有地环干扰和EMI(电磁干扰),它是在两条传输线中同时产生的,电势以地为参考 例如:在复杂的电磁环境中,附近的大型电器设备工作时产生的电磁干扰,可能通过空间耦合进入CAN总线,形成共模噪声 ; 差模噪声主要是信号串扰,产生于两条传输线之间, 比如在高速数据传输时,相邻信号线的信号可能会互相干扰,导致
CAN与CAN FD在新能源汽车中的 电磁兼容
2025-02-22
一 新能源汽车通信网络背景 随着新能源汽车的快速发展,车辆的智能化、自动化程度不断提高,这使得车内电子控制单元(ECU)之间的通信变得愈发关键。通信网络如同新能源汽车的“神经系统” ,负责传递各种控制指令和数据信息,确保车辆各个系统的协同工作。 新能源汽车中,电池管理系统(BMS)需要与电机控制器(MCU)、整车控制器(VCU)等进行实时通信,以实现对电池状态的精确