Global
EN
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
人才发展
人才发展
一同释放潜力,塑造人类健康未来
新闻&资源
时刻与您分享我们的一点一滴
企业新闻 行业资讯 产品知识 资料下载
N型SIC和P型SIC的欧姆接触的基本原理?
来源:音特电子 发布日期:2023-06-18 浏览次数:2511次
分享:

N型碳化硅和P型碳化硅的欧姆接触的基本原理是通过合适的金属材料与碳化硅材料之间的电子转移来建立接触电阻尽可能小的电气连接。

  • 对于N型碳化硅,其导电性主要由额外的自由电子贡献。当金属与N型碳化硅接触时,金属中的自由电子可以轻易地进入N型碳化硅中,形成电子注入,使碳化硅形成具有低电阻的接触。
  • 对于P型碳化硅,其导电性主要由空穴贡献。当金属与P型碳化硅接触时,金属中的自由电子与P型碳化硅中的空穴结合,形成电子-空穴对而减弱空穴浓度,这样就可以形成具有低电阻的接触。
  • N型和P型SIC的欧姆接触的基本原理是通过金属与碳化硅之间的电子转移来建立具有低电阻的接触。

AL(铝)基金属在SiC(碳化硅)中被称为有效受主元素,是因为它具有以下特点:

     1. 高自由缺陷浓度:在SiC材料中,铝原子可以导致高自由缺陷浓度。这是因为铝原子可以在SiC晶格中形成额外的局部缺陷,例如铝空位和局部杂质能级。这些缺陷和能级提供了额外的能量状态,增加了电荷载流子的扩散、复合等过程,从而影响了材料的电性能。

     2. 掺杂效果:铝的掺杂可以改变SiC的电子浓度类型,使其由N型(导电性由自由电子贡献)转变为P型(导电性由空穴贡献)。这种掺杂效果使得铝在SiC中具有重要的应用价值,例如制备双极型功率器件。

      总之,铝在SiC中是有效受主元素,这是因为它可以引入高自由缺陷浓度,并且改变材料的电子浓度类型,从而对SiC材料的电性能产生重要影响。

热门新闻
电感选型:基本原则
2025-03-24
01 电感基础知识与重要性 电感是能够把电能转化为磁能而存储起来的元件,结构类似于变压器,但只有一个绕组。它具有一定的电感,特性是通直流,阻碍交流当电流流过导体时,会产生电磁场,电感就是衡量线圈产生电磁感应能力的物理量;给一个线圈通入电流,线圈周围就会产生磁场,有磁通量通过,通入的电流越大,磁场越强,磁通量越大,通过线圈的磁通量和通入的电流成正比,它们的比值叫做自感系数,也就是电感 电感的作用
CAN总线共模电感51μH vs 100μH如何选择?
2025-03-14
一 . 为什么需要共模电感? 1.1 CAN总线干扰主要来源于共模噪声和差模噪声,共模噪声常见的有地环干扰和EMI(电磁干扰),它是在两条传输线中同时产生的,电势以地为参考 例如:在复杂的电磁环境中,附近的大型电器设备工作时产生的电磁干扰,可能通过空间耦合进入CAN总线,形成共模噪声 ; 差模噪声主要是信号串扰,产生于两条传输线之间, 比如在高速数据传输时,相邻信号线的信号可能会互相干扰,导致
CAN与CAN FD在新能源汽车中的 电磁兼容
2025-02-22
一 新能源汽车通信网络背景 随着新能源汽车的快速发展,车辆的智能化、自动化程度不断提高,这使得车内电子控制单元(ECU)之间的通信变得愈发关键。通信网络如同新能源汽车的“神经系统” ,负责传递各种控制指令和数据信息,确保车辆各个系统的协同工作。 新能源汽车中,电池管理系统(BMS)需要与电机控制器(MCU)、整车控制器(VCU)等进行实时通信,以实现对电池状态的精确