Global
EN
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
人才发展
人才发展
一同释放潜力,塑造人类健康未来
新闻&资源
时刻与您分享我们的一点一滴
企业新闻 行业资讯 产品知识 资料下载
IBM研制出新型人工智能芯片 智能
来源:音特电子 发布日期:2019-06-21 浏览次数:1594次
分享:

在12月初举办的NeurIPS会议上,IBM展示了一款新型人工智能芯片。

IBM的研究人员声称,他们已开发出一个更加高效的模型用于处理神经网络,该模型只需使用8位浮点精度进行训练,推理(inferencing)时更是仅需4位浮点精度。该研究的成果已于2018年12月初在国际电子元件会议(International Electron Devices Meeting,IEDM)和神经信息处理系统大会(Conference on NeuralInformation Processing Systems,NeurIPS)上发布。

简而言之,IBM展示了专用于减少精度处理单元的定制硬件,以及能够利用该硬件进行深度神经网络(DNN)训练和推理的新算法。其主要目标在于提高硬件的能效,使其可以应用于范围更广泛的人工智能解决方案。

下一代人工智能应用程序需要更快的响应时间、更大的人工智能工作负载以及来自众多数据流的多模式数据。为了释放人工智能的全部潜能,我们重新设计了将人工智能考虑在内的硬件:从加速器到用于人工智能工作负载的特定用途硬件(例如我们的新芯片),以及最终用于人工智能的量子计算技术。使用新的硬件解决方案扩展人工智能是IBM研究院(IBM Research)更广泛努力的一部分,以期从范围狭窄的人工智能(通常用于处理具体的、界限清楚的任务)转向范围广泛的人工智能(跨越各个学科,可帮助人类解决最迫切的问题)。

具体而言,IBM研究院提出了可提供8位浮点(FP8)精度用于训练神经网络的硬件。8位浮点精度是16位浮点精度(FP16)的一半,而16位浮点精度自2015年以来一直是深度神经网络工作的事实标准。(提议的硬件将依靠FP16来累积点积,而不是现在使用的FP32。)借助于稍后介绍的新算法技术,IBM的研究人员表示,他们可以跨各种深度学习模型保持精确度。事实上,他们记录在案了使用FP8精度基于图像、语音和文本数据集对深度神经网络所进行的训练,并实现了与基于FP32的训练相当的模型精确度。

降低精度的模型基于三项软件创新:一种新的FP8格式,让用于深度神经网络训练的矩阵乘法和卷积计算可在不损失精确度的情况下工作;一种“基于组块的计算”技术,使得只需使用FP8乘法和FP16加法即可处理神经网络成为现实;并且在加权更新过程中使用浮点随机舍入,允许以16位浮点精度(而不是32位浮点精度)计算这些更新。

IBM展示的硬件是一款基于“新式数据流核心”的14纳米处理器。该处理器由降低精度的数据流引擎、16位浮点精度组块加法引擎和核心上内存及内存访问引擎组成。研究人员声称,与现在的平台相比,这种设计有可能使训练速度提高2到4倍。其中部分改进是用于训练模型的位宽减少了2倍的结果,但其余改进则是因为用于利用降低的精度的软件技术。

也许更重要的是,IBM研究院表示,由于其FP8/FP16模型相较标准FP16/FP32模型而言所需的内存带宽和存储空间更少,并且因为其硬件是为处理这些神经网络而定制的,能效可提高2-4倍以上。研究人员表示,这将使深度神经网络模型能够在一些边缘设备上进行训练,而不仅仅是在数据中心服务器上进行训练。

研究人员还发表了一篇关于在多个深度学习应用程序中使用4位浮点精度推理,而同样不损失精确度的论文(目前,大部分推理基于使用8位浮点精度或更多位浮点精度的计算)。此处的意义在于,位宽的减小将再次提高吞吐量和能效。对降低精度的需求也使得基于在训练期间优化的位精度构建用于训练和推理的统一架构更加自然。根据研究人员的说法,由于减少了专用于计算的处理器面积并拥有在内存中保留模型和激活数据的能力,此类硬件可以带来推理性能的超线性提升。

相关研究领域需要与将这种降低精度的模型应用于模拟芯片相关,模拟芯片天生不如数字芯片精确,但能效却高得多。IBM的研究人员开发了一种使用相变存储器(PCM)的8位浮点精度模拟加速器,它可以充当用于处理神经网络的计算基板和存储介质。根据2018年早些时候发布的工作成果,IBM研究院已经实施了该技术的创新加成,称为预测PCM(Projected PCM,Proj-PCM),它可以减少PCM硬件的一些令人烦恼的不精确性。研究团队认为,该设计可为物联网(IoT)和边缘设备等功率受限环境中的人工智能训练和推理提供高性能水平。

尽管所有这些仍处于研究阶段,但IBM显然对构建自己的人工智能芯片和加速器并将其交付到客户手中感兴趣。他们计划如何将该技术商业化仍然有待观察。无论如何,如果降低精度的训练和推理流行起来,IBM将面临很多竞争。这些竞争不仅仅来自将相应调整自己的处理器平台的英特尔和英伟达等行业巨头,它们还来自似乎每天都在涌现的人工智能芯片初创公司。在一个如此飞速变化的环境中,成功将青睐于最灵活变通的参与者。

热门新闻
Arm 如何成为 AI 投资热潮的意外赢家?
2024-11-01
来源:科技新报  大约20年前,英特尔做出改变运算历史进程的决定。 2005 年,苹果在 Mac 电脑内搭载英特尔芯片后不久,乔布斯(Steve Jobs)向当时英特尔首席执行官 Paul Otellini 询问是否愿意供应 iPhone 处理器,但遭到拒绝,使得未来移动运算架构彻底改变。 英特尔20年前的这项决定,使Arm有效垄断芯片设计,在移动市场的市场规模达到PC产业的两倍多。
为什么墨西哥半导体产业会迎来新机遇?
2024-09-26
作者:Fusion孚昇电子链接:https://zhuanlan.zhihu.com/p/713384511来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 几十年来,电子制造业的叙事一直围绕着中国、韩国和台湾等巨头展开。然而,墨西哥正崛起成为一个新的竞争者。墨西哥的电子行业正在经历显著的增长,将这个国家转变为半导体、人工智能应用等领域的强国。 尽管前景令人振
前8个月我国集成电路出口增长24.8%
2024-09-11
9月10日,海关总署网站显示,据海关统计,2024年前8个月,我国货物贸易(下同)进出口总值28.58万亿元人民币,同比(下同)增长6%。 出口数据方面,前8个月,我国出口机电产品9.72万亿元,增长8.8%,占我出口总值的59.1%。其中,自动数据处理设备及其零部件9423.8亿元,增长11.6%;集成电路7360.4亿元,增长24.8%;汽车5408.4亿元,增长22.2%;手机5143.7